COMPLEX BANACH SPACES WHOSE DUALS ARE L₁-SPACES

BY

ASVALD LIMA

ABSTRACT

We prove that for a complex Banach space A the following properties are equivalent:

i) A^* is isometric to an $L_1(\mu)$ -space;

ii) every family of 4 balls in A with the weak intersection property has a non-empty intersection;

iii) every family of 4 balls in A such that any 3 of them have a non-empty intersection, has a non-empty intersection.

I. Introduction

Several recent papers have dealt with complex Banach spaces whose duals are isometric to L_1 -spaces. The results obtained are complex analogues of results obtained for real spaces. We will here mention the papers of Effros [2], Hirsberg and Lazar [5], Hustad [7], Lima [9] and Olsen [11].

In [7] Hustad introduced the notion of weak intersection property. He said that a family of balls in a Banach space A has the weak intersection property if their images by every linear functional of norm 1 have a non-empty intersection. He then extended results by Lindenstrauss [10] for real spaces to complex spaces and proved the equivalence of the following statements:

i) A^* is isometric to an $L_1(\mu)$ -space;

ii) every finite family of balls in \overline{A} with the weak intersection property has a non-empty intersection;

iii) every family of 7 balls in A with the weak intersection property has a non-empty intersection.

In the real case, it suffices to consider 4 balls instead of 7 balls in (iii). The aim of this paper is to show that also in the complex case it suffices to consider 4 balls (Theorem 4.1). In Theorem 4.1 we also show, in contrast to the real case, that

Received October 29, 1975

preduals of L_1 -spaces are characterized by the following property: every family of 4 balls in A such that any three of them have a non-empty intersection has a point in common. This property is translated into a dual property in A^* , and most of the paper is devoted to the study of this dual property. In Theorem 5.1 we show that this property characterizes complex L_1 -spaces.

Throughout the paper we use the following notation. Let A be a Banach space. $B(a, r)$ denotes the closed ball with center a and radius r. The unit ball $B(0, 1)$ will also be written A_1 . $H^n(A)$ is the space

$$
\left\{(x_1,\cdots,x_n)\in A^n\colon \sum_{i=1}^n x_i=0\right\}
$$

with the norm $||(x_1, \dots, x_n)|| = \sum_{i=1}^n ||x_i||$. The convex hull of a set S is denoted co (S). A convex cone C in A is said to be a *facial cone* if $C = \bigcup_{\lambda \ge 0} \lambda F$ for some proper face F of A_1 , and C is said to be *hereditary* if for all $x \in C$ and $y \in A$ with $||x|| = ||y|| + ||x - y||$ we have $y \in C$. Then C is hereditary if and only if C is a union of facial cones [1]. A convex cone C in A is said to have the *Riesz decomposition property* if for all $x_1, \dots, x_n, y_1, \dots, y_m \in C$ such that $\sum_{i=1}^n x_i =$ $\sum_{i=1}^{m} y_i$, there exist $z_{ij} \in C$ such that

(*)
$$
x_i = \sum_{j=1}^{m} z_{ij}, \quad y_j = \sum_{i=1}^{n} z_{ij}, \quad 1 \leq i \leq n, \quad 1 \leq j \leq m.
$$

If (*) holds with $n = m = 2$, then (*) holds for all n and m. If C is a convex set, $\partial_{\alpha}C$ denote the set of extreme points of C.

2. The $R_{n,k}$ -property

DEFINITION. Let $n > k \ge 2$ be natural numbers and let A be a real or complex Banach space. We say that A has the $R_{n,k}$ -property if for all $(x_i, \dots, x_n) \in H^n(A)$, there exist $(z_{i_1}, \dots, z_{i_n}) \in H^n(A)$ where i runs from 1 to $\binom{n}{k}$ such that:

i) $(x_1, \dots, x_n) = \sum_i (z_{i1}, \dots, z_{in});$

 $(2-1)$ ii) $||x_i|| = \sum_i ||z_{ii}||$ for all *i*;

iii) (z_{i1}, \dots, z_{in}) has at most k non-zero components for each i.

The $R_{3,2}$ - and $R_{4,2}$ -properties were studied in [9] for real Banach spaces. (They were then called R_3 and R_4 .) In [9] we proved that a real Banach space A has the $R_{3,2}$ -property if and only if A has the 3.2 intersection property, and that A has the $R_{4,2}$ -property if and only if A is isometric to an $L_1(\mu)$ -space for some measure μ . From [9, theor. 2.12] it follows that if a Banach space has the $R_{4,2}$ -property then it has the $R_{n,2}$ -property for all $n \ge 2$. For complex Banach spaces the $R_{n,2}$ -properties are of no interest. It turns out that for complex spaces the R_4 ₃-property plays much the same role as the $R_{4,2}$ -property does for real spaces. We are now going to prove that if A has the $R_{4,3}$ -property then A has the $R_{n,3}$ -property for all $n \ge 4$. First we need a lemma.

LEMMA 2.1. Let A be a real or complex Banach space with the R_{4,3}-property. *Then every facial cone of A has the Riesz decomposition property.*

PROOF. Let C be a facial cone of A and let $x_1, x_2, y_1, y_2 \in C$ be such that $x_1 + x_2 = y_1 + y_2$. Then $(x_1, x_2, -y_1, -y_2) \in H^4(A)$. By the $R_{4,3}$ -property, there exist $z_{ii} \in A$ such that $(2 - 1)$ is satisfied. We write it:

$$
(x1, x2, -y1, -y2)
$$

= (0, z₁₂, z₁₃, z₁₄)
+ (z₂₁, 0, z₂₃, z₂₄)
+ (z₃₁, z₃₂ 0, z₃₄)
+ (z₄₁, z₄₂, z₄₃, 0).

Since C is a facial cone, C is hereditary. Hence by (2-1) (ii), $z_{ij} \in C$ for $i=1,2,3,4$ and $j=1,2$ and $-z_{ij} \in C$ for $i=1,2,3,4$ and $j=3,4$. Now define elements $u_{ij} \in C$ by

$$
u_{11} = z_{41} - z_{23}
$$

\n
$$
u_{12} = z_{31} - z_{24}
$$

\n
$$
u_{21} = z_{42} - z_{13}
$$

\n
$$
u_{22} = z_{32} - z_{14}
$$

Then since $(z_{i1},\dots, z_{i4}) \in H^4(A)$ we get

$$
u_{11} + u_{12} = z_{31} + z_{41} - (z_{23} + z_{24})
$$

$$
= z_{31} + z_{41} + z_{21} = x_1
$$

and also

$$
u_{21} + u_{22} = x_2
$$

$$
u_{11} + u_{21} = y_1
$$

$$
u_{12} + u_{22} = y_2.
$$

Hence C has the Riesz decomposition property. The proof is complete.

THEOREM 2.2. *If A is a real or complex Banach space with the R4,3-property, then* A has the R_n *s*-property for all $n \geq 4$.

PROOF. Since A has the $R_{(n+1),3}$ -property if and only if A has the $R_{(n+1),n}$ and the $R_{n,3}$ -properties, it suffices to show that if A has the $R_{n,3}$ -property, then it has the $R_{(n+1),n}$ -property. So assume $n \ge 4$ and that A has the $R_{n,3}$ -property. Let $(x_1, \dots, x_{n+1}) \in H^{n+1}(A)$. Then $(x_1, \dots, x_{n-1}, x_n + x_{n+1}) \in H^{n}(A)$. Clearly A has the R_{n,(n-1)}-property, so there exist $z_{ij} \in A$ such that (2-1) is satisfied. We write it:

Since $(x_n, x_{n+1}, -z_{1n}, \dots, -z_{(n-3)n}, -z_{(n-2)n} - z_{(n-1)n}) \in H^{n}(A)$, by the $R_{n,3}$ property there exist $u_{ij} \in A$ such that (2-1) is satisfied. Now we add all elements (u_{i1},\dots, u_{in}) such that $u_{i1} = 0$, and then we add all elements (u_{i1},\dots, u_{in}) such that $u_{i1} \neq 0$ and $u_{i2} = 0$. Then we get:

$$
(x_n, x_{n+1}, -z_{1n}, -z_{2n}, \cdots, -z_{(n-2)n} -z_{(n-1)n})
$$

\n
$$
= (u_{11}, u_{12}, u_{13}, 0, \cdots, 0
$$

\n
$$
+ \cdots
$$

\n
$$
(2-3)
$$

\n
$$
+ (u_{(n-2)1}, u_{(n-2)2}, 0, 0, \cdots, u_{(n-2)n})
$$

\n
$$
+ (u_{(n-1)1}, 0, u_{(n-1)3}, u_{(n-1)4}, \cdots, u_{(n-1)n})
$$

\n
$$
+ (0, u_{n2}, u_{n3}, u_{n4}, \cdots, u_{nn})
$$

where (i) and (ii) from $(2-1)$ are satisfied and (iii) from $(2-1)$ is satisfied by the $(n-2)$ first u-lines.

Let C be the facial cone generated by $-(x_n + x_{n+1})$. Then by $(2-2) - z_{in} \in C$ for $i = 1, \dots, (n-1)$, and by (2-3), $u_{ii} \in C$ for all i and for all $j \ge 3$. (The property (ii) from $(2-1)$ is satisfied also in $(2-2)$ and $(2-3)$.) By Lemma 2.1 there exist v_{in} , $w_{in} \in C$ such that

$$
u_{in} = v_{in} + w_{in} \text{ for } i = (n-2), (n-1), n, - z_{(n-2)n} = \sum_{i} v_{in}
$$

and

$$
- z_{(n-1)n} = \sum_i w_{in}.
$$

Now we split the last column in $(2-3)$ and get:

$$
(x_{n}, \, x_{n+1}, \, -z_{1n}, \, \cdots, \, -z_{(n-2)n}, \, -z_{(n-1)n})
$$
\n
$$
= (u_{11}, \, u_{12}, \, u_{13}, \, \cdots, \, 0, \, 0)
$$
\n
$$
+ \cdots
$$
\n
$$
(2-4) \quad + (u_{(n-2)1}, \, u_{(n-2)2}, \, 0, \, \cdots, \, v_{(n-2)n}, \, w_{(n-2)n})
$$
\n
$$
+ (u_{(n-1)1}, \, 0, \, u_{(n-1)3}, \, \cdots, \, v_{(n-1)n}, \, w_{(n-1)n})
$$
\n
$$
+ (0, \, u_{n2}, \, u_{n3}, \, \cdots, \, v_{nn}, \, w_{nn}).
$$

In $(2-4)$ the properties (i) and (ii) from $(2-1)$ are satisfied and also property (iii) except for the last three lines. The next thing to do is to use the $R_{4,3}$ -property to decompose $(u_{(n-2)1}, u_{(n-2)2}, v_{(n-2)n}, w_{(n-2)n}) \in H^4(A)$. Line three from below in $(2-4)$ is then replaced by these four new lines which all satisfy (iii) in $(2-1)$. Then we add all lines with 0 in the first component, and then we add all lines with non-zero first component and 0 in the second component. Hence we get:

$$
(x_n, x_{n+1}, -z_{1n}, -z_{2n}, \cdots, -z_{(n-1)n})
$$

\n
$$
= (a_{11}, a_{12}, a_{13}, 0, \cdots, 0)
$$

\n
$$
+ \cdots
$$

\n
$$
(2-5)
$$

\n
$$
+ (a_{(n-1)1}, a_{(n-1)2}, 0, 0, \cdots, a_{(n-1)(n+1)})
$$

\n
$$
+ (b_{11}, 0, b_{13}, b_{14}, \cdots, b_{1(n+1)})
$$

\n
$$
+ (0, b_{22}, b_{23}, b_{24}, \cdots, b_{2(n+1)})
$$

where (i) and (ii) from $(2-1)$ are satisfied and also (iii) from $(2-1)$ is satisfied except for the last two lines.

We now split the last column in $(2-2)$ as follows:

$$
(x_1, x_2, \cdots, x_{n-1}, x_n, x_{n+1})
$$
\n
$$
= (0, z_{12}, \cdots, z_{1(n-1)}, a_{11} - b_{13}, a_{12} - b_{23})
$$
\n
$$
+ (z_{21}, 0, \cdots, z_{2(n-1)}, a_{21} - b_{14}, a_{22} - b_{24})
$$
\n
$$
+ \cdots
$$
\n
$$
+ (z_{(n-1)1}, z_{(n-1)2}, \cdots, 0, a_{(n-1)1} - b_{1(n+1)}, a_{(n-1)2} - b_{2(n+1)})
$$
\n
$$
+ (z_{n1}, z_{n2}, \cdots, z_{n(n-1)}, 0, 0).
$$

Now it only remains to show that (2–6) satisfies (i), (ii) and (iii) (with $k = n$) from $(2-1)$. From $(2-5)$ we get

$$
\sum_i (a_{i1} - b_{1(i+2)}) = \sum_i a_{i1} + b_{11} = x_n,
$$

and since all b_{i3} , b_{i4} , \cdots , $\in C$ and the norm is additive on C,

$$
\sum_{i} \|a_{i1} - b_{1(i+2)}\| \leq \sum_{i} \|a_{i1}\| + \sum_{i} \|b_{1(i+2)}\|
$$

=
$$
\sum_{i} \|a_{i1}\| + \left\|\sum_{i} b_{1(i+2)}\right\| = \sum_{i} \|a_{i1}\| + \|b_{11}\| = \|x_{n}\|.
$$

Similar formulas hold for x_{n+1} . The proof is complete.

Theorem 2.2 gives a new proof of the following result:

COROLLARY 2.3. A Banach space with the $R_{4,2}$ -property, has the $R_{n,2}$ -property *for all* $n \geq 3$ *.*

In Section 5 we shall show that a complex Banach space has the $R_{4,3}$ -property if and only if it is isometric to an $L_1(\mu)$ -space.

REMARK. We do not know whether Theorem 2.2 can be generalized to other k than 2 and 3. In the proof of Theorem 2.2 we used in an essential way Lemma 2.1. Since by Helly's theorem [4] and Theorem 3.1 every real three-dimensional space has the $R_{n,4}$ -property, Lemma 2.1 does not hold for spaces with the $R_{n,4}$ -property.

3. Intersection properties

DEFINITION. Let $n > k \ge 2$ be natural numbers and let A be a real or complex Banach space. We say that A has the *almost n.k. intersection property* $(a.n.k.I.P.)$ if for every family ${B(a_i, r_i)}_{i=1}^n$ of n balls in A such that for any k of them

$$
\bigcap_{j=1}^k\ B(a_{i_j},r_{i_j})\neq\varnothing
$$

we have

$$
\bigcap_{j=1}^n B(a_j,r_j+\varepsilon)\neq\varnothing \text{ for all } \varepsilon>0.
$$

The word *almost* is omitted if we can take $\varepsilon = 0$ as well.

THEOREM 3.1. Let $n > k \ge 2$ and let A be a real or complex Banach space. A *has the a.n.k.I.P. if and only if* A^* *has the* $R_{n,k}$ -property.

PROOF. Let Ω be the set of all subsets of $\{1, 2, \dots, n\}$ consisting of exactly k different numbers. Then Ω has cardinality $\binom{n}{k}$. For each $w \in \Omega$, let

$$
S_w = \{(f_1, \cdots, f_n)\} \in H^n(A^*)_1: f_j = 0 \text{ for } j \notin w\}.
$$

Then each S_w is convex and w^{*}-compact, and by Theorem 2.10 in [9], we get that A has the $a.n.k.I.P.$ if and only if

$$
H^{n}(A^{*})_{1} = \text{co} \left(\bigcup_{w \in \Omega} S_{w} \right).
$$

Assume first that A has the a.n.k.I.P., and let $x_1, \dots, x_n \in A^*$ be such that $\sum_{i=1}^{n} x_i = 0$. Without loss of generality, we may assume $\sum_{i=1}^{n} ||x_i|| = 1$, so $(x_1, \dots, x_n) \in H^n(A^*)$. Then there exist $\lambda_w \ge 0$ with $\Sigma_{w \in \Omega} \lambda_w = 1$ and $(z_{w_1},\dots,z_{w_n})\in S_w$ such that

$$
(x_1,\dots,x_n)=\sum_{w\in\Omega}\lambda_w(z_{w1},\dots,z_{wn}).
$$

Clearly we only have to verify $(2-1)$ (ii): We have

$$
1 = \sum_{j=1}^{n} ||x_{j}|| = \sum_{j=1}^{n} || \sum_{w \in \Omega} \lambda_{w} z_{wj} ||
$$

\n
$$
\leq \sum_{j=1}^{n} \sum_{w \in \Omega} \lambda_{w} || z_{wj} || = \sum_{w \in \Omega} \left(\lambda_{w} \sum_{j=1}^{n} || z_{wj} || \right)
$$

\n
$$
\leq \sum_{w \in \Omega} \lambda_{w} = 1.
$$

Hence

$$
\|x_i\| = \sum_{w \in \Omega} \|\lambda_w z_{wj}\|
$$

for all j.

The other implication is also straight-forward. If $(x_1, \dots, x_n) \in H^n(A^*)$, with $\sum_{j=1}^{n} ||x_j|| = 1$, let $z_{ij} \in A^*$ $(j = 1, \dots, n$ and $i = 1, \dots, \binom{n}{k}$ be as in (2-1), and define

$$
\lambda_i = \sum_{j=1}^n ||z_{ij}||.
$$

Then $\Sigma_i \lambda_i = 1$ and

$$
(x_1,\dots,x_n)=\sum_i\lambda_i(\lambda_i^{-1}z_{i1},\dots,\lambda_i^{-1}z_{in})\in\text{co}\bigg(\bigcup_{w\in\Omega}S_w\bigg).
$$

The proof is complete.

From Theorem 3.1 and Theorem 2.2 we get:

COROLLARY 3.2. *If A has the a.4.3.I.P., then A has the a.n.3.I.P. for all n* \geq 4.

REMARK. In Section 4 we shall show that for complex Banach spaces, the word *almost* in Corollary 3.2 can be omitted. We do not know if the same is true for real spaces. In [10] Lindenstrauss proved that if A has the $7.3.1.P.,$ then it has the *n.3.I.P.* for all $n \ge 4$.

We will need the next lemma in Section 4.

LEMMA 3.3. Assume that A has the a.4.3.*I.P.* and that $(x_1, x_2, x_3) \in$ $\partial_e H^3(A^*)_1$ *with all* $x_i \neq 0$ *. Then* $||x_i||^{-1}x_i \in \partial_e A_1^*$.

PROOF. Assume $x_1 = y_1 + y_2$ with $||x_1|| = ||y_1|| + ||y_2||$. Then by Theorem 3.1 we can find $z_{ij} \in A^*$ such that (2-1) is satisfied:

$$
(y_1, y_2, x_2, x_3)
$$

= (0, z₁₂, z₁₃, z₁₄)
+ (z₂₁, 0, z₂₃, z₂₄)
+ (z₃₁, z₃₂, 0, z₃₄)
+ (z₄₁, z₄₂, z₄₃, 0).

Hence we get

$$
(x1, x2, x3)
$$

= (z₁₂, z₁₃, z₁₄)
+ (z₂₁, z₂₃, z₂₄)
+ (- z₃₄, 0, z₃₄)
+ (- z₄₃, z₄₃, 0)

where (ii) from $(2-1)$ is still satisfied. This immediately gives us a convex combination in $H^3(A^*)_1$. Hence $z_{34} = z_{43} = 0 = z_{31} = z_{32} = z_{41} = z_{42}$ and $z_{12} = cz_{21}$ or $z_{21} = cz_{12}$ for some constant c. But this gives that both y_1 and y_2 are multiples of x_1 . Hence $||x_1||^{-1}x_1 \in \partial_{\epsilon} A_1^*$. x_2 and x_3 are treated similarly.

REMARK. Clearly Lemma 3.3 has a natural generalization to spaces with the a. $(n + 1)$. *n*. I. P. for $n \ge 3$.

In Section 4 we will consider complex spaces only. For real Banach spaces the following result of Lindenstrauss [10, theor. 6.3] is an easy consequence of Lemma 3.3.

THEOREM 3.4. Let A be a closed subspace of $C_R(K)$, for some compact *Hausdorff space K, containing the constants. If A has the a.4.3.LP., then it has the a.n.2.I.P.* for all $n \geq 2$.

PROOF. Let $(x_1, x_2, x_3) \in \partial_e H^3(A^*)$. By theorem 2.10 in [9] it suffices to show that one $x_i = 0$. Assume for contradiction that all $x_i \neq 0$. From Lemma 3.3 it follows that $x_i = \lambda_i \varepsilon_i |A$ where $|\lambda_i| = ||x_i||$ and ε_i is a point-measure on K. Since $1 \in A$, we get

$$
0=\sum_{i=1}^3\lambda_i\varepsilon_i(1)=\sum_{i=1}^3\lambda_i.
$$

W.l.o.g. we may assume $\lambda_1 < 0$ and $\lambda_2, \lambda_3 > 0$. The convex sum

$$
\frac{x_1}{\lambda_1} = \frac{\lambda_2}{\lambda_2 + \lambda_3} \left(\frac{x_2}{\lambda_2} \right) + \frac{\lambda_3}{\lambda_2 + \lambda_3} \left(\frac{x_3}{\lambda_3} \right)
$$

gives us a contradiction to $x_1/\lambda_1 \in \partial_{\epsilon} A_1^*$. The proof is complete.

4. Complex preduals of L-spaces

In this Section A will denote a complex Banach space. We will solve problem 1, and give partial solutions to problem 2 and 3 of Hustad [7]. All solutions are positive.

DEFINITION. A family of balls ${B(a_i, r_i)}_{i \in I}$ in a complex (real) Banach space A is said to have the weak intersection property if for any $f \in A_{1}^{*}$,

$$
\bigcap_{i\in I} B(f(a_i),r_i)\neq\varnothing \text{ in }\mathbf{C}(\mathbf{R}).
$$

By Helly's theorem, in real Banach spaces a family of balls has the weak intersection property if and only if they are mutually intersecting, and in complex Banach spaces a family of balls has the weak intersection property if and only if every subfamily of three balls has the weak intersection property.

DEFINITION. Let $n \ge 3$ be a natural number. We say that a real or complex Banach space A is an *almost* $E(n)$ -space if for every family ${B(a_i, r_i)}_{i=1}^n$ of n balls in A with the weak intersection property, we have

(4-1)
$$
\bigcap_{i=1}^n B(a_i, r_i + \varepsilon) \neq \emptyset \text{ for all } \varepsilon > 0.
$$

We say that A is an $E(n)$ -space if we can take $\varepsilon = 0$ in (4-1).

Theorem 4.1 is the main theorem of this paper.

THEOREM 4.1. *Let A be a complex Banach space. Then the following statements are equivalent:*

i) A^{**} *is a P*₁-space;

ii) A^* is isometric to an $L_1(\mu)$ -space for some measure μ ;

iii) if ${B(a_i, r_i)}_{i \in I}$ is any family of balls in A with the weak intersection property such that the set of centers ${a_i}_{i \in I}$ is relatively norm-compact, then $\bigcap_{i\in I} B(a_i,r_i) \neq \emptyset;$

iv) *A* is an $E(n)$ -space for all $n \ge 3$;

- v) *A is an E(4)-space;*
- vi) *A has the n.3.I.P. for all n* ≥ 4 ;
- vii) *A has the 4.3.I.P.*

PROOF. The equivalence (i) \Leftrightarrow (ii) is due to Hasumi [3] and Sakai [12]. The equivalence (i) \Leftrightarrow (iv) is due to Hustad [7]. (See also Hustad [6] and Lima [9].) The following equivalences are trivial:

$$
(iii) \Rightarrow (iv) \Rightarrow (v)
$$

$$
\Downarrow \qquad \Downarrow
$$

$$
(vi) \Rightarrow (vii).
$$

Hence we only have to prove (vii) \Rightarrow (iv) \Rightarrow (iii). These implications follow from Corollary 4.3 and Proposition 4.4 below.

LEMMA 4.2. Let A be a complex Banach space with the a.4.3.I.P. If $n \ge 3$ and $(x_1, \dots, x_n) \in \partial_e H^n(A^*)$, then there exist $z_i \in \mathbb{C}$ with $\sum_{i=1}^n z_i = 0$ and $y \in \partial_e A_1^*$ *such that* $x_i = z_i y$ *for all j.*

PROOF. By Corollary 3.2, A has the a.n.3.I.P. Let $(x_1, \dots, x_n) \in \partial_e H^n(A^*)_1$. By theorem 2.10 in [9], (x_1, \dots, x_n) has at most three components different from 0. Hence it suffices to consider an element $(x_1, x_2, x_3) \in \partial_{\epsilon} H^3(A^*)_1$. If one $x_i = 0$, there is nothing to prove, so assume all $x_i \neq 0$. Let us write $\lambda_i = ||x_i||$ and $\varepsilon_i = \lambda_i^{-1} x_i$. By Lemma 3.3 all $\varepsilon_i \in \partial_{\varepsilon} A_i^*$. We have all $\lambda_i > 0$ and $\Sigma_{i=1}^3 \lambda_i = 1$. Let i denote the imaginary unit. Since $(\lambda_1(1+i)\varepsilon_1, \lambda_1(1-i)\varepsilon_1, 2\lambda_2\varepsilon_2, 2\lambda_3\varepsilon_3) \in H^4(A^*)$ and A^* has the $R_{4,3}$ -property by Theorem 3.1, there exist $z_{kj} \in A^*$ such that $(2-1)$ is satisfied.

At least one $z_{k_4} \neq 0$.

Assume $z_{14} \neq 0$. Then since $\varepsilon_3 \in \partial_{\varepsilon} A^*$, there exists $r > 0$ such that $z_{14} = 2r\lambda_3 \varepsilon_3$, and similarly there exist $s \ge 0$ and $t \ge 0$ such that

$$
0 = z_{12} + z_{13} + z_{14}
$$

= $s\lambda_1(1-i)\varepsilon_1 + t2\lambda_2\varepsilon_2 + r2\lambda_3\varepsilon_3$.

Since

$$
0 = 2r\lambda_1\varepsilon_1 + 2r\lambda_2\varepsilon_2 + 2r\lambda_3\varepsilon_3
$$

we get

$$
\lambda_1(s(1-i)-2r)\varepsilon_1+2\lambda_2(t-r)\varepsilon_2=0.
$$

Now $\lambda_1 \neq 0$ and $s(1-i) \neq 2r$, so $\varepsilon_1 = z \varepsilon_2$ for some $z \in \mathbb{C}$ with $|z| = 1$. Hence also $\varepsilon_3 = \lambda \varepsilon_2$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, and the conclusion of the lemma follows.

The case $z_{24} \neq 0$ is treated similarly.

Assume $z_{34} \neq 0$. Then there exist $r > 0$ and s, $t \geq 0$ such that

$$
2r\lambda_3 \varepsilon_3 = z_{34} = -(z_{31} + z_{32})
$$

= -(s\lambda_1(1 + i) + t\lambda_1(1 - i))\varepsilon_1

Hence $\varepsilon_3 = z\varepsilon_1$ and also $\varepsilon_2 = \lambda \varepsilon_1$ for some $z, \lambda \in \mathbb{C}$ with $|z| = |\lambda| = 1$. This concludes the proof of the lemma.

From Lemma 4.2 and [9, theor. 2.14] and [7, prop. 4.8] follows:

COROLLARY 4.3: *If a complex Banach space A has the a.4.3.LP., then it is an* $E(n)$ -space for all $n \ge 3$.

PROPOSITION 4.4. Assume A is a complex Banach space and that A is an $E(n)$ -space for all $n \geq 3$. If ${B(a_i, r_i)}_{i \in I}$ is a family of balls in A with the weak *intersection property such that the set of centers* ${a_i}_{i \in I}$ *is relatively norm-compact, then* $\bigcap_{i\in I} B(a_i, r_i) \neq \emptyset$.

PROOF. Let ${B(a_i, r_i)}_{i \in I}$ be a family of balls in A with the weak intersection property and such that ${a_i}_{i \in I}$ is relatively norm-compact. By Lemma 2.2 and the hypothesis in the proposition,

$$
\bigcap_{i\in I} B(a_i,r_i+\partial)\neq\varnothing \text{ for all } \partial>0.
$$

Clearly we may assume that all $r_i \leq K$ for some constant K. Define

$$
f(t,\varepsilon)=\sqrt{t^2+\varepsilon^2}-t.
$$

Then

$$
f(t,\varepsilon)\geq \frac{\varepsilon^2}{3K}
$$

for small $\epsilon > 0$ and all $t \in [0, K]$. Choose $\epsilon > 0$ and define $\partial_n = (\epsilon/2^n)^2/3K$ for all *n*. Choose $x_0 \in \bigcap_{i \in I} B(a_i, r_i + \partial_0)$. Now we choose inductively $(x_n)_{n=0}^{\infty}$ in A such that

$$
x_{n+1}\in B(x_n,\varepsilon/2^n+\partial_{n+1})\cap \bigcap_{i\in I}B(a_i,r_i+\partial_{n+1}).
$$

This is clearly possible since, when x_n is found, $\{B(x_n, \varepsilon/2^n)\} \cup \{B(a_i, r_i)\}_{i \in I}$ has the weak intersection property by the choice of ∂_n and by lemma 6.4 in [9]. Then $(x_n)_{n=0}^{\infty}$ is a Cauchy-sequence in A and

$$
x=\lim_{n\to\infty}x_n\in\bigcap_{i\in I}B(a_i,r_i).
$$

This completes the proof of Proposition 4.4 and Theorem 4.1.

REMARK. (vi) and (vii) in Theorem 4.1 solves problem 1 of Hustad [7] to the affirmative. From Corollary 4.3 it follows that if A is an a. $E(4)$ -space, then A is an $E(n)$ -space for all $n \ge 3$. This gives a partial solution to problems 2 and 3 of Hustad [7]. We have proved that in some special cases already $a.E(3)$ -spaces are $E(n)$ -spaces for all n. (This result will appear elsewhere.) This partial result on $E(3)$ -spaces and (vii) in Theorem 4.1 is false in the real case. In [7] Hustad proved that if A is an $E(7)$ -space, then A is an $E(n)$ -space for all $n \ge 3$.

5. L_1 -spaces and the $R_{4,3}$ -property

THEOREM 5.1. *Let A be a complex Banach space. Then the following properties are equivalent:*

i) *A* is isometric to an $L_1(\mu)$ -space;

ii) *A has the R_{n, 3}-property for all n* \geq 4;

iii) *A has the* $R_{4,3}$ *-property.*

PROOF.

(iii) \Rightarrow (i). Assume A has the R_{4.3}-property. By theorem 2.1 in [9] it follows that A^* has the 4.3.1.P. Hence by Theorem 4.1, A^* is an $E(n)$ -space for all $n \ge 3$. By w*-compactness for balls in A* and a theorem of Hustad [6], A* is a P_1 -space. Hence by results of Hasumi [3] and Sakai [12], A is isometric to an $L_1(\mu)$ -space.

(i) \Rightarrow (ii). Suppose that A is isometric to an $L_1(\mu)$ -space. Then by [12], A^{*} is isometric to a $C(K)$ -space, and by [3] and [6] A^* is an $E(n)$ -space for all $n \ge 3$. But then by Theorem 4.1 and Theorem 3.1, A^{**} has the $R_{n,3}$ -property for all $n \ge 4$. By a known result (see also (iii) \Rightarrow (i)) A^{**} is isometric to an $L_1(\nu)$ -space, and by [8, §17, theor. 3] A is the range of a contractive projection in A^{**} . Hence A has the $R_{n,3}$ -property for all $n \geq 4$. The proof is complete.

The following result is due to Lindenstrauss and Tzafriri (see [2]).

COROLLARY 5.2. *If A is a complex* $L_1(\mu)$ *-space and P is a projection in A with* $||P|| = 1$, *then P(A) is isometric to an L₁(v)-space.*

REFERENCES

1. E. Alfsen and E. Eltros, *Structure in real Banach spaces,* Ann. of Math. 96 (1972), 98-173.

2. E. Ettros, *On a class of complex Banach spaces,* Illinois J. Math. 18 (1974), 48-59.

3. M. Hasumi, The *extension property of complex Banach spaces,* Tohoku Math. J. (2nd Ser.) 10 (1968), 135-142.

4. Helly, Über Mengen Konvexer Körper mit Gemeinschaftlichen Punkten, Jber. Deutsch. Math.-Verein. 32 (1923).

5. B. Hirsberg and A. Lazar, *Complex Lindenstrauss spaces with extreme points,* Trans. Amer. Math. Soc. 186 (1973), 141-150.

6. O. Hustad, *A note on complex P,-spaces,* Israel J. Math. 16 (1973), 117-119.

7. O. Hustad, *Intersec'tion properties of balls in complex Banach spaces whose duals are L,-spaces,* Acta Math. 132 (1974), 283-313.

8. E. Lacey, The *isometric theory of classical Banaeh spaces,* in *Die Grundlehren der Math. Wissenschaften,* Springer-Verlag, 1974.

9. Å. Lima, *Intersection properties of balls and subspaces in Banach spaces* (to appear).

10. J. Lindenstrauss, *Extensions of compact operators,* Mem. Amer. Math. Soc. 48 (1964).

11. G. Olsen, *On the classification of complex Lindenstrauss spaces,* Math. Scand. 35 (1974), 237-258.

12. S. Sakai, *C*-algebras and W*-algebras,* in *Ergebnisse der Math.,* No. 60, Springer-Verlag, 1971.

DEPARTMENT OF MATHEMATICS AND STATISTICS AGRICULTURAL UNIVERSITY OF NORWAY 1432 AAS-NLH, NORWAY