
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S ,  Vol. 24, No. 1, 1976 

COMPLEX BANACH SPACES WHOSE 
DUALS ARE LrSPACES 

BY 

ASVALD LIMA 

A B S T R A C T  

We prove that for a complex Banach space A the following properties are 
equivalent: 

i) A*  is isometric to an L~(~)-space; 
ii) every family of 4 balls in A with the weak intersection property has a 

non-empty intersection; 
iii) every family of 4 balls in A such that any 3 of them have a non-empty 

intersection, has a non-empty intersection. 

I. Introduction 

Several recent papers have dealt with complex Banach spaces whose duals are 

isometric to L,-spaces. The results obtained are complex analogues of results 

obtained for real spaces. We will here mention the papers of Effros [2], Hirsberg 

and Lazar [5], Hustad [7], Lima [9] and Olsen [11]. 

In [7] Hustad introduced the notion of weak intersection property. He said 

that a family of balls in a Banach space A has the weak intersection property if 

their images by every linear functional of norm 1 have a non-empty intersection. 

He then extended results by Lindenstrauss [10] for real spaces to complex spaces 

and proved the equivalence of the following statements: 

i) A* is isometric to an Ll(p.)-space; 

ii) every finite family of balls in A with the weak intersection property has a 

non-empty intersection; 

iii) every family of 7 balls in A with the weak intersection property has a 

non-empty intersection. 

In the real case, it suffices to consider 4 balls instead of 7 balls in (iii). The aim of 

this paper is to show that also in the complex case it suffices to consider 4 balls 

(Theorem 4.1). In Theorem 4.1 we also show, in contrast to the real case, that 
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preduals of L~-spaces are characterized by the following property:  every family 

of 4 balls in A such that any three of them have a non-empty intersection has a 

point in common.  This proper ty  is translated into a dual property in A* ,  and 

most of the paper  is devoted to the study of this dual property.  In Theorem 5.1 

we show that this property characterizes complex Ll-spaces. 

Throughout  the paper  we use the following notation. Let A be a Banach 

space. B(a, r) denotes the closed ball with center a and radius r. The unit ball 

B(0, 1) will also be written A~. H"(A)  is the space 

with the norm II (x , , - .  -, x.)ll = x7=, II x, II. The convex hull of a set S is denoted 

co (S). A convex cone C in A is said to be a facial cone if C = U,__-o AF for some 

proper  face F of A,,  and C is said to be hereditary if for all x E C and y E A 

with II x II = II y II + II x - y II w e  h a v e  y ~ C. T h e n  C is hereditary if and only if C 

is a union of facial cones [1]. A convex cone C in A is said to have the Riesz 
decomposition property if for all x, ,-  �9 �9 x., yl, �9 �9 �9 y,, E C such that E;'=~ x~ = 

E,%, y,, there exist z,j E C such that 

( . )  x , =  ~ z , ,  y j =  ~ z , , ,  l<=i<=n, l<=j<=m. 
i=~ i=1 

If (*)  holds with n = m = 2, then (*)  holds for all n and m. If C is a convex set, 

0,C denote the set of extreme points of C. 

2. The R.,k-property 

DEFINITION. Let n > k => 2 be natural numbers and let A be a real or 

complex Banach space. We say that A has the R,.k-property if for all 

(x~,.. . ,  x.) ~ H"(A ), there exist ( z , , . , . ,  z,.) E H"(A) where i runs from 1 to 

(~r such that: 

i) (x , , ' "  " , x , ) =  E, (z ,I , '"  ", z,,); 

(2-1) ii) Ir x, II = X, II z,, II for all j; 
iii) ( z , , . . - ,  z,.) has at most k non-zero components  for each i. 

The Ra, z- and R4,2-properties were studied in [9] for real Banach spaces. 

(They were then called R3 and R4.) In [9] we proved that a real Banach space A 

has the Ra. z-property if and only if A has the 3.2 intersection property,  and that 
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A has the R4,2-property if and only if A is isometric to an L,0z)-space for some 

measure /z. From [9, theor. 2.12] it follows that if a Banach space has the 

R4,2-property then it has the R,,2-property for all n => 2. For complex Banach 

spaces the R,, 2-properties are of no interest. It turns out that for complex spaces 

the R4.3-property plays much the same role as the R4,2-property does for real 

spaces. We are now going to prove that if A has the R4.3-property then A has 

the R,.~-property for all n => 4. First we need a lemma. 

LEMMA 2.1. Let A be a real or complex Banach space with the R4.3-property. 

Then every facial cone of A has the Riesz decomposition property. 

PROOF. Let C be a facial cone of A and let x~, x2, yi, y2 ~ C be such that 

xl + x2 = y~+ y2. Then (x,,x2, - y~, - y2)E H4(A).  By the R4.3-property, there 

exist z 0 E A such that ( 2 -  1) is satisfied. We write it: 

( x , ,  x~, - y , ,  - y~)  

= (0,  z,2,  z,3,  z ,4)  

+ (Z21 , 0 ,  Z23, Z24) 

-~- (Z31 , Z32 O, Z34) 

-~- (Z41, Z42, Z43, 0) .  

Since C is a facial cone, C is hereditary. Hence by (2-1) (ii), z, E C for 

i = l , 2 , 3 , 4 a n d j = l , 2 a n d  - z ~ j ~ C  for i = l , 2 , 3 , 4 a n d j = 3 , 4 .  Now define 

elements  u,j E C by 

Ull : Z41 -- Z2 3 

Ul 2 ~ Z31 -- Z24 

U21 ~ .742-  Z13 

U22 ~ Z 3 2 -  Z14. 

Then since (z~ , , . . . ,  z,,)E H ' ( A )  we get 

U11 + ul: = z:u + z4; - (z2s+ z24) 

~-" --731 Dr- Z41 -~" Z21 : X l  

and also 
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U21 -I- //22 = X2 

U H + / 4 2 1 =  y l  

U12 -}- //22 = y2" 

Hence  C has the Riesz decomposi t ion  proper ty .  The  proof  is complete .  

THEOREM 2.2. I f  A is a real or complex Banach  space with the R4,3-property, 

then A has the R.,3-property for all n >-_ 4. 

PROOF. Since A has the R(.+l),3-property if and only if A has the R(.+,),.- 

and the R .,3-properties, it suffices to show that  if A has the R., 3-property, then it 

has the R(.+~),.-property. So assume n >_- 4 and that  A has the R.,3-property.  Let  

(x,, �9 �9 �9 x.+~) E H"+' (A  ). Then (xh" �9 ", x._~, x. + x.+,) E H "  (A) .  Clearly A has 

the R . , ( ._ . -p roper ty ,  so there exist z~j E A such that (2-1) is satisfied. We write 

it: 

(x,, x2, �9 �9 �9 x.-~, x,, + x,,+~) 

= ( 0 ,  Z , 2 ,  " " " , Z l ( n - l ) ,  Z l n )  

+ (z~,, 0,"  �9 �9 z2 ( . - , ,  z2 . )  

(2 -2 )  + 

+ (z. , ,  z.2, �9 �9 �9 z.(._,~, 0). 

Since ( x . , x , + , , - z , . , . . . , - z ( , _ 3 ) , , - z r 1 6 2  , . ) @ H " ( A ) ,  by the R..3- 

p roper ty  there exist u,j E A such that (2-1) is satisfied. Now we add all e lements  

( u . , . . . ,  u~,) such that u .  = 0, and then we add all e lements  ( u , , . . . ,  u~.) such 

that U~l ~ 0 and u~2 = 0. Then  we get: 

(2-3) 

(Xro X n + l ~  - -  Z l r o  - -  Z 2 r t ~  " " " ~ - -  Z ( n  2)n 

= ( U l l ,  /r /'/13, 0 ,  " ' ' ,  0 

-~- �9 . �9 

+ ( u ( .  2)~, u(,, 2)2, O, O, " ' ' ,  u(. 2). 

+(U(.- l )b  O, U(,,-03, U(.-1)4, " ' ' ,  tt(.-1)n 

+ (0, u.2, u.3, u.4, �9 �9 �9 u.. 

-- Z (n - I ) . )  
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where  (i) and (ii) f rom (2-1) are satisfied and (iii) f rom (2-1) is satisfied by the 

(n - 2) first u-lines. 

Let  C be the facial cone genera ted  by - (x. + x.+,). Then  by (2-2) - z,. E C 

for i = 1 , . . . , ( n -  1), and by (2-3), ui, C C for all i and for all ] => 3. (The 

property (ii) from (2-1) is satisfied also in (2-2) and (2-3).) By L e m m a  2.1 there 

exist vi., w~. @ C such that 

and 

u~ .=v~ .+w~,  for i = (n - 2), (n - 1 ) ,  n, 

- -  Z (n 2)n = E l ) in 
i 

- -  Z (  n - I } n  ~ -  E W i n .  
i 

Now we split the last column in (2-3) and get: 

I x.+~, - z~., "" ", - z(.-2)., - z(._,).) (x~ 

= (u , , ,  u,~, u,3, . . . ,  0, 0) 

~- . . , 

(2-4) 
+(u~._2~,, u~.-~,  O, . . . ,  v~~ ~., w~._~).) 

+(u~._,),, O, u~._,., . . . ,  v~. ~). ,  w~._,>) 

+ ( 0 ,  u,~, u , , ,  . . . ,  v~176 w,~ ). 

In (2-4) the proper t ies  (i) and (ii) from (2-1) are satisfied and also p roper ty  (iii) 

except  for the last three lines. The  next  thing to do is to use the R4, 3-property to 

decompose  (u~,-2)~, u~,-2~2, v~,_=),, w~,_2~,)E H"(A) .  Line three  from below in 

(2-4) is then replaced by these four  new lines which all satisfy (iii) in (2-1). Then  

we add all lines with 0 in the first componen t ,  and then we add all lines with 

non-zero  first componen t  and 0 in the second componen t .  Hence  we get: 

(2-5) 

( X n  ~ 

= (all~ 

+ (a( .  l)l, 

+ (bl, ,  

+ (0, 

X n + l ~  - -  Z , n ~  - -  Z 2 n ~  " " " ~ - -  Z ( n - l ) n )  

a 1 2 ,  a 1 3 ,  0 ,  . . . ,  0 )  

ar 0, 0, . . . ,  ar162 

O, hi3, b14, . ' ' ,  b j(~+l)) 

b=, b23, &4, " ' ,  b~<.+,)) 
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where (i) and (ii) from (2-1) are satisfied and also (iii) from (2-1) is satisfied 

except for the last two lines. 

We now split the last column in (2-2) as follows: 

(2-6) 

(Xl• X 2 ~  " " " , 

-- (0, z12, " ' ,  

+ (z21, 0, . . . ,  

- ~  ~  , 

+ ( Z ( . - O h  Z ( n  1)2,  " "  " 

2F ( Z n l ,  Zn2~ " " " , 

Xn 1~ Xn~ X n + l )  

z~, o, a , -  b13, a i 2 -  b23) 

ZZ(n-O, a21- b 1 4 ,  az2-bz4) 

- b  ' 0 a ( . - 1 ) 1 -  bw,+o,  at.  1)2 2(,,§ 

z,~.-l~, 0, 0). 

Now it only remains to show that (2-6) satisfies (i), (ii) and (iii) (with k = n) from 

(2-1). From (2-5) we get 

( a , l -  b 1t,+2)) = ~] a .  + b .  = x., 
i i 

and since all hi3, b~4," ", E C and the norm is additive on C, 

Z }l a,1 - b ~,,+2, II ~ Z [[ a,1 I1 + Z [[ b 1(i+2)II 
i i i 

= Z, II a,, II + b l,,+z, = Z, II a,1 [I + II bll [l = II x .  I1. 

Similar formulas hold for x,+l. The proof is complete. 

Theorem 2.2 gives a new proof of the following result: 

COROLLARY 2.3. A Banach space with the R4, z-property, has the R.,z-property 

for all n >= 3. 

In Section 5 we shall show that a complex Banach space has the R4, 3-property 

if and only if it is isometric to an L,(/~)-space. 

REMARK. We do not know whether Theorem 2.2 can be generalized to other 

k than 2 and 3. In the proof of Theorem 2.2 we used in an essential way Lemma 

2.1. Since by Helly's theorem [4] and Theorem 3.1 every real three-dimensional 

space has the R,,4-property, Lemma 2.1 does not hold for spaces with the 

R.. :p roper ty .  
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3. Intersection properties 

DEFINITION. Let n > k =>2 be natural numbers and let A be a real or 

complex Banach space. We say that A has the almost n.k. intersection property 

(a.n.k.I.P.) if for every family {B(a~, r~)}7=, of n balls in A such that for any k of 

them 
k 

B ( a,,, r,j ) r (~ 
1 = ,  

we have 

B(aj, r j + e ) ~ O  for all e>O. 
] = 1  

The word almost is omitted if we can take e = 0 as well. 

THEOREM 3.1. Let n > k >= 2 and let A be a real or complex Banach space. A 

has the a.n.k.LP, if and only if A * has the R,, ~-property. 

PROOF. Let lq be the set of all subsets of {1, 2, �9 �9 �9 n } consisting of exactly k 

different numbers. Then II has cardinality (7,). For each w E l-l, let 

S~ = { ( f , , - " , f . ) } ~  H"(A*) , :  fj = 0 for ] ~  w}. 

Then each Sw is convex and w *-compact, and by Theorem 2.10 in [9], we get that 

A has the a.n.k.I.P, if and only if 

H " ( A * ) , =  c o (  [~J S,) .  

Assume first that A has the a.n.k.I.P., and let x,, �9 �9 �9 x, E A * be such that 

Y~'=,xj =0 .  Without loss of generality, we may assume E~'=, Ilxj II = 1, so 

( x , . . . , x , ) E H " ( A * ) , .  Then there exist Aw---0 with E w ~ A w = l  and 

( z w , , . . . , z w . ) ~  Sw such that 

(x,,. .-,x,)= 
wE[~  

Clearly we only have to 

]=1  

__< 

verify (2-1) (ii): We have 

2 -IIz ,11=2 Ilz.,ll 
/ = 1  w e l l  w e f t  

_ - < ~ A ~ = I .  
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H e n c e  

II xj II = ~ II A~ zw, II wen 

for  all j. 

The  o the r  implicat ion is also s t ra ight- forward.  If ( x , .  �9  x,)  E H " ( A  *), with 

:q=, II xj II = 1, let zq E A * (j = 1 , . . . ,  n and i = 1 , . . . , , ( ~ ) )  be as in (2-1), and 

define 

, ,  = II z,, It. 
1=1 

Then  E~A~ = 1 and 

( X l ' ' ~ 1 7 6  2J~i(J~i|Zi|''~ 

The  proof  is comple te .  

F rom T h e o r e m  3.1 and T h e o r e m  2.2 we get: 

COROLLARY 3.2. I r A  has the a.4.3.I.P., then A has the a.n.3.I.P, for all n >-_4. 

REMARK. In Section 4 we shall show that  for  complex  Banach  spaces,  the 

word  almost in Corol la ry  3.2 can be omit ted .  We  do not  know if the same is t rue  

for  real spaces.  In [10] Lindens t rauss  p roved  that  if A has the 7.3.I.P., then it has 

the n.3.I.P, for  all n -> 4. 

We  will need  the next  l e m m a  in Section 4. 

LEMMA 3.3. Assume that A has the a.4.3.I.P, and that (XI, X2, X3) E 
&H3(A *), with all x, ~ O. Then II x, I1-' x, ~ aeA *. 

PROOF. 

we can find z~j E A *  such that  (2-1) is satisfied: 

Assume  x, = y, + y2 with II Xl II = II y, II + II y=ll. Then  by T h e o r e m  3.1 

(y,, y2, x2, x3) 

= (0, z,~, z,~, z~,) 

"~ (Z21, 0, Z23, Z24) 

+ (z3,, z32, 0, z3,) 

-~- (Z41, Z42, Z43, 0). 

H e n c e  we get 
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X1, X2~ X3) 

: (ZI2 , ZI3, ZI4) 

§ (Z21, Z23, Z24) 

§ ( -- 234 ~, 0, Z34 ) 

§ ( -  Z43 , Z43, 0 )  

where (ii) from (2-1) is still satisfied. This immediately gives us a convex 

c o m b i n a t i o n  in  H3(A *)1. H e n c e  z34 : z43 = 0 = z31 = z 3 2  -~- z41 = z42 a n d  z,2 = CZ:l 

or z21 = CZl2 for some constant c. But this gives that both y, and y2 are multiples 

of x,. Hence [Ix11]-lXl E OeA *. x2 and x3 are treated similarly. 

REMARK. Clearly Lemma 3.3 has a natural generalization to spaces with the 

a. (n + 1).n.I.P. for n => 3. 

In Section 4 we will consider complex spaces only. For real Banach spaces the 

following result of Lindenstrauss [10, theor. 6.3] is an easy consequence of 

Lemma 3.3. 

THEOREM 3.4. Let A be a closed subspace of C~(K), for some compact 

Hausdorff space K, containing the constants. I f  A has the a.4.3.LP., then it has the 

a.n.2.LP, for all n >-2. 

PROOF. Let ( x ,  x2, x3) E OeH3(A *)1. By theorem 2.10 in [9] it suffices to show 

that one x~ = 0. Assume for contradiction that all x i#  0. From Lemma 3.3 it 

follows that xi = A,E, IA where I A, I = II x, II and s, is a point-measure on K. Since 

1 @ A, we get 

2 o : 
i--1 i-1 

W.l.o.g. we may assume AI < 0 and A2, A3 > 0. The convex sum 

gives us a contradiction to xl/A~ E OeA *. The proof is complete. 

4. Complex preduals of L-spaces 

In this Section A will denote a complex Banach space. We will solve problem 

1, and give partial solutions to problem 2 and 3 of Hustad [7]. All solutions are 

positive. 
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DEFINITION. A family of balls {B (a,, r~)},~,in a complex (real) Banach space A 

is said to have the weak intersection property if for any f E A*,  

n Bif(a , ) ,  r,) # • in C (R). 
i E I  

By Helly's theorem, in real Banach spaces a family of balls has the weak 

intersection property if and only if they are mutually intersecting, and in 

complex Banach spaces a family of balls has the weak intersection property if 

and only if every subfamily of three balls has the weak intersection property. 

DEFINITION. Let n => 3 be a natural number. We say that a real or complex 

Banach space A is an almost E(n)-space if for every family {B(a~, r~)}"-i of n 

balls in A with the weak intersection property, we have 

(4-1) n B(a,,r~+e)#Q for all e>0 .  
i = l  

We say that A is an E(n)-space if we can take e = 0 in (4-1). 

Theorem 4.1 is the main theorem of this paper. 

THEOREM 4.1. Let A be a complex Banach space. Then the following state- 

ments are equivalent: 

i) A** is a Pl-space ; 

ii) A*  is isometric to an Ll(tt )-space for some measure tz ; 

iii) i /{B (a,, r~)},~, is any family of balls in A with the weak intersection property 

such that the set of centers {a~}~ is relatively norm-compact, then 

r) ,~ ,B(a , , r , ) r  

iv) A is an E(n)-space for all n >= 3; 

v) A is an E(4)-space; 

vi) A has the n.3.I.P, for all n >-4; 

vii) A has the 4.3.I.P. 

PROOF. The equivalence (i) <:> (ii) is due to Hasumi [3] and Sakai  [12]. The 

equivalence (i) <:~ (iv) is due to Hustad [7]. (See also Hustad [6] and Lima [9].) 

The following equivalences are trivial: 

(iii) ~ (iv) ~ (v) 

,t), 

(vi) ~ (vii). 
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Hence  we only have  to p rove  (vii) f f  (iv) f f  (iii). These  implicat ions follow f rom 

Corol la ry  4.3 and Propos i t ion  4.4 below. 

LEMMA 4.2. Let A be a complex Banach space with the a.4.3.LP. I f  n >- 3 and 

( x l , "  . , x , ) E  O~H"(A *)I, then there exist zj ~ C  with ET_l z i = 0  and y E c)~A * 

such that x, = zjy for all j. 

PROOF. By Corol la ry  3.2, A has the a.n.3.I .P.  Let  ( x l , . . ' ,  x , ) E  OeH"(A *)1" 

By theo rem 2.10 in [9], (x~,. � 9  x , )  has at most  three  c o m p o n e n t s  different  f rom 

0. Hence  it suffices to consider  an e l emen t  (xl, x2, x3) E OeH3(A *)1. If one  xj = 0, 

there is nothing to prove,  so assume all x j~  0. Let  us write Aj = Ilx~]l and 

ej = Ailxi. By L e m m a  3.3 all ej C OeA*. We have  all Aj > 0  and 3 E~=I A t = 1. Let  i 

denote  the imaginary  unit. Since (A,(1 + i)el, AI(1 - i)e,, 2A2e2, 2A3e3) E H ' ( A  *) 

and A * has the R4,3-property by T h e o r e m  3.1, there  exist zkj ~ A * such that  

(2-1) is satisfied. 

(,~i(1 + i)e,, a,(1 - i )e , ,  2,~2e~, 2,~3e3) 

= ( 0 ,  z12, z13, z14) 

+ (z~,, O, z~3, z~,) 

-~ (Z31, Z32 , 0, Z34 ) 

+ (z41, z42, z4~, 0). 

At  least one zk4 ~ 0. 

Assume  zz4 ~ 0. Then  since s3 E OeA ~', there  exists r > 0 such that  z14 = 2rA383, 

and similarly there  exist s _-> 0 and t => 0 such that  

0 : Z12 + 7.13 + 7-14 

= sAj(1  - i ) e l  + t 2 A 2 e 2 +  r2A3e3 .  

Since 

we get 
0 = 2rA,el + 2rA262 + 2 rAsg3  

M ( s ( 1 -  i ) - 2 r ) s ,  + 2 A 2 ( t -  r)s2 = O. 

Now A, ~ 0 and s ( 1 -  i ) ~  2r, so e, = zs2 for  some z E C with [z ] = 1. H e n c e  

also e3 = Ae2 for some  A ~ C with I A [ = 1, and the conclusion of the l e m m a  

follows. 

The  case z24 ~ 0 is t rea ted  similarly. 

Assume  z34 ~ 0. Then  there  exist r > 0 and s, t _-> 0 such that  
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2rA3E3 : Z34 : - -  ( Z 3 1  + Z 3 2 )  

= - (sA,(1  + i ) +  tA, (1 - i ) ) e , .  

Hence e3= zel and also e2 = Ael for some z,A E C with I z I = I A I = 1. This 

concludes the proof of the lemma. 

From Lemma 4.2 and [9, theor. 2.14] and [7, prop. 4.8] follows: 

COROLLARY 4.3: If a complex Banach space A has the a.4.3.LP., then it is an 

E(n)-space for all n >= 3. 

PROPOSmON 4.4. Assume A is a complex Banach space and that A is an 

E(n)-space for all n >= 3. If {B(a~, r~)},~, is a family of balls in A with the weak 

intersection property such that the set of centers {a, },~t is relatively norm-compact, 

then n , ~ , B ( a , , r , ) ~ Q .  

PROOF. Let {B(a,, r~)},~ be a family of balls in A with the weak intersection 

property and such that {a~ } ~  is relatively norm-compact. By Lemma 2.2 and the 

hypothesis in the proposition, 

n B ( a , , r , + a ) ~ O  for all a > 0 .  
i E l  

Clearly we may assume that all r, =< K for some constant K. Define 

Then 

f(t, e) = k / t  2 + e 2 - t. 

f(t, e ) ~  e2 

for small e > 0 and all t E [0, K]. Choose e > 0 and define a. = (e /2"y /3K for 

all n. Choose xoE n~erB(a, ,  r, + Oo). Now we choose inductively (xn):=o in A 

such that 

x.+~ E B(x. ,  e/2" + a..~) n n B(a,, r, + a,+~). 

This is clearly possible since, when x, is found, {B(x., e/2")} U {B(a,, r,)},~ has 

the weak intersection property by the choice of a. and by lemma 6.4 in [9]. Then 

(x.):=o is a Cauchy-sequence in A and 

x =  l i m x . ~  n B(a,,r~). 
i E l  

This completes the proof of Proposition 4.4 and Theorem 4.1. 
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REMARK. (vi) and (vii) in T h e o r e m  4.1 solves p rob lem 1 of Hus tad  [7] to the 

affirmative. F rom Corol lary  4.3 it follows that if A is an a .E(4)-space,  then A is 

an E ( n ) - s p a c e  for all n => 3. This gives a partial  solution to problems 2 and 3 of 

Hustad  [7]. We have proved that  in some special cases a l ready a .E(3)-spaces  are 

E (n ) - spaces  for  all n. (T~is result will appear  elsewhere.)  This partial result on 

E(3)-spaces  and (vii) in T h e o r e m  4.1 is false in the real case. In [7] Hustad 

proved that if A is an E(7)-space,  then A is an E (n ) - space  for all n _-> 3. 

5. L~-spaces and the R4,3-property 

THEOREM 5.1. Let  A be a complex Banach  space. Then the following proper- 

ties are equivalent:  

i) A is isometric to an L~(l~ )-space ; 

ii) A has the R,,3-property for all n >-_ 4; 

iii) A has the R4,3-property. 

PROOF. 

(iii) ~ (i). Assume A has the R4.3-property. By theorem 2.1 in [9] it follows 

that A *  has the 4.3.I.P. Hence  by T h e o r e m  4.1, A *  is an E (n ) - space  for all 

n -> 3. By w *-compactness  for  balls in A * and a theorem of Hustad  [6], A * is a 

P~-space. Hence  by results of Hasumi [3] and Sakai [12], A is isometric to an 

L~(/z)-space. 

(i) ~ (ii). Suppose that A is isometric to an L,(/~)-space. Then  by [12], A * is 

isometric to a C(K)-space ,  and by [3] and [6] A * is an E (n ) - space  for all n _-> 3. 

But  then by T h e o r e m  4.1 and T h e o r e m  3.1, A ** has the R, .3-property for  all 

n _-> 4. By a known result (see also (iii) ~ (i)) A ** is isometric to an L~(o)-space, 

and by [8, w theor.  3] A is the range of a contract ive project ion in A **. Hence  

A has the R, .3-property for  all n - 4 .  The  proof  is complete .  

The  following result is due to Lindenstrauss  and Tzafriri  (see [2]). 

COROLLARY 5.2. I r A  is a complex L~(i.t )-space and P is a projection in A with 

I]P II = 1, then P ( A  ) is isometric to an L~(o)-space. 
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